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Optimization of Planar Devices by the Finite
Element

PABLO GARCIA AND J.

.4&@act—The finite elementmethod has been shown to be an efficient

and flexible way of computing the scattering parameters of N-port planar

devices (microstrip. stripline, rectangular wavegnide, etc.). In addition, it

can provide at little extra cost the sensitivity of scattering parameters to

changes in the shape of the device. Such information may be useful in

itselfi it also leads to a faster automatic optimization of the shape. This

approach has been implemented with high-order, triangular finite elements

and the Broyden-Fletcher– Goldf arb-Shanno optimization scheme. Sensi-

tivities were computed for an empty parallel-plate wavegnide and for a

rectangular wavegrride containing a dielectric slab the agreement with

analytical solutions was excellent. The method was nsed to determine the

optimum shape of a microsfiip 3 dB hybrid and was found to require far

fewer analyses than a previous techniqne [2].

I. INTRODUCTION

A PLANAR DEVICE may be defined as one in which

the electromagnetic fields do not vary significantly in

one direction, so that the analysis can be carried out in a

plane. A junction of rectangular waveguides with their H

planes aligned is an example of a perfectly planar device:

provided the incident waves are all of the fundamental

mode, the fields in the junction will not vary with distance

perpendicular to the H plane. By replacing the conducting

sidewalls by magnetic walls, a second class of planar

devices is obtained: the H-plane junction of parallel-plate

waveguides.

In microstrip and stripline components, the fields vary

in all three dimensions. However, below the metal plate

and away from the edges the variation in the direction

perpendicular to the plate is small. Furthermore, the ef-

fects of the fringing fields at the edges can be approxi-

mated by an extra width of metal, followed by a magnetic

wall. This approximation amounts to replacing the mi-

crostrip or stripline with equivalent parallel-plate wave-

guide. Formulas for the dimensions and dielectric constant

of the equivalent model have been derived and used in

several analyses [1]–[3].

The parallel-plate waveguide junction is therefore of
some interest. For the analysis of arbitrary shapes, numeri-
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cal methods must be used and several have been developed

[1], [3]-[5]. Further, there have been some attempts at

getting a computer to predict the best shape for a planar

device, i.e., predicting the shape that minimizes return loss,

gives a specified phase shift or division of power, and so

on. The basic approach to automatic optimization is sim-

ple: use the numerical analysis method repeatedly, adjust-

ing the shape of the device each time in such a way as to

improve the performance. In principle, any reliable method

of analysis will do. Integral equation techniques [2] and

mode matching [6] have been used.

An important consideration in optimization is effi-

ciency. There are two ways in which the computer time can

be reduced: using a more efficient analysis technique and

decreasing the number of analyses needed to reach the

optimum. In the former regard, the finite element method

with appropriate sparse matrix techniques is competitive

with other techniques, such as integral equation (or bound-

ary element) methods. But further, it is shown in this paper

how the finite element method can provide, at little extra

cost, the sensitivity of the scattering parameters to changes

in shape. Not only might this information be useful in

itself, but, as described below, it can be used to guide the

optimization of the device and to reduce substantially the

number of analyses required.

11. FINITE ELEMENT ANALYSIS OF PLANAR DEVICES

The scalar Helmoltz equation governs E, the y compo-

nent of the electric field in a planar device:

E=EO on aaD

:=0 on af2N

a a
“=a’z+a’z

where Q is the area of the device in the z – x plane, ~, is

the relative permittivity of the medium, kO is the normal-

ized frequency, and EO is the prescribed tangential field at

the port. The quantity d $?~ is a magnetic wall or open

circuit (0/C). When EO is zero, d KID is an electric wall or

short circuit (S/C).
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Alternatively, it has been shown [7] that the solution to

the above equation is the stationary point of a functional:

F(E) =;~((v,E)%@2] do. (2)

This is the basis of the finite element analysis of planar

devices [8]. By introducing trial functions, (2) is reduced to

a matrix form:

F=+]~([s]-k;[T])[E] (3)

where [S] and [T] are well-known global matrices [7].

Taking the stationary point of F and applying boundary

conditions leads to a matrix equation of the form [A][E] =

[b], in which [A] is sparse and symmetric. It is important

to solve this equation with a method that exploits the

sparsity. In the present work, a frontal solver is used [9].

It is convenient to characterize a planar device by net-

work parameters. A variational expression exists for the

impedance matrix of a waveguide junction [10]. Using this

result, the finite element method was used to solve 3-D

waveguide problems [11]. It was shown that for H-plane

devices [8] the entries of the admittance matrix are given

by an expression similar to (2):

[Y]wn==(w,w) (4)

where

and

m,n=l,. ... N

N number of ports,

~o intrinsic impedance of free space,

b dimension of the structure in the direction of

translational symmetry,

[Y] normalized admittance matrix for the device, de-

fined by [1]= [Y][V], where [1] and [V] are

column vectors of ‘normalized currents and volt-

ages [12] at the ports,

E(~) electric field when there is a normalized voltage

of 1 on port k and all other ports are short-cir-

cuited.

E ‘~) is obtained by taking the first variation of (2) when

exciting port k and short-circuiting all other ports. The

entries of the admittance matrix are obtained by matrix

multiplication of the solution vectors [E(~)] with the global

matrices:

‘Jb[E(m)]T{[~]-k~[~]}[~(n)].(6)[Y]..==
o

The scattering matrix is then given by

[~1 = ([~ol+[yl)-’([~ol -[yl) (7)

III. SENSITIVITY TO PERTURBATIONS

Finite elements have been used in the past to evaluate

the sensitivity of magnetostatic energy to perturbations of

shape, both for optimization [13] and for the calculation of

forces and torques by the principle of virtual work [14]. In

this paper it will be shown how the sensitivity of network

parameters to perturbations of shape can be obtained from

a finite element analysis.

A, Derivative with Respect to an Arbitrary Geometric

Parameter

Let the shape of the region Qg be dependent on a scalar

parameter g in the following way: each point rg in Qg is

related to a point r in a reference region Q by

r~=r+go (8)

where o is a specified vector function over 0. Let ~~~) be

the solution to the Helmoltz equation over the region Qg,

with port m excited and the other ports shortecl. Define a

symmetric, bilinear form (q, ~) as follows:

From (4) the mn th entry of the admittance matrix [Y](g)

is

[Y]mn(g)=m – @ (~jm), E$))g. (lo)

Then it can be shown [15] that the derivative of the

admittance with respect to g, evaluated at g = O, is

d[Y]~.

dg
<(EKE)

~= o = koqo
(11)

where ($, ~) is another symmetric, bilinear form:

and (rl, r2) = (z, x).

B. Derivative with Respect to a Single Vertex Coordinate in

a Finite Element Mesh

In the finite element method, the region Q is divided

into triangles. The geometry of the region is then depen-

dent on the coordinates of the vertices of these triangles.

In this section, we evaluate (11) for a deformation of Q

corresponding to the movement of a single vertex along

one coordinate axis, with all other vertices remaining fixed.

If the moving vertex has

movement is along axis r, (1

o such that

{
o(r) = ~’

a global number k, and the

being 1 or 2), then we need a

at j. = r(k)
(13)

atr=r(z), i#kwhere [ Io] is the N X N identity matrix.
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where a, is the unit vector in the rl direction, and r(k) is C. Derivative with Respect to a Combined Movement of

the position vector of vertex k. Vertices in a Finite Element Mesh

Such a o can be constructed by linear interpolation of The derivatives with respect to vertex coordinates shown
the vertex values; i.e., o is a continuous, first-order vector above may be related to other geometric parameters that
field on each triangle. Let ~ be the local vertex number (1, d

2, or 3) of node k in element h. Then in that element,
escribe the optimization problem. Let a set of geometric

parameters gy (j= 1,2,. c ., Ng) specify a movable bound-

o={~al (14) ary d!d~ in the following way: Let ( r~i), r~i) ), i =

1,2,. ...
where fi is the ~ th area coordinate [7]. The derivative

m ~, be m ~ triangle vertices lying on d fl~. For

d [ Y] ~H/dg at g = O for this o will be called
i=~,2,. . . ,mO and 1=1,2,

d[Y]~n
jcNg

(i)= ~ [R,]t,g, +[q]t,r, (23)
dr/(@ “ ~=1

Also in element h, where [ ~11 ,,, [ C[] ,J are constant, user-specified coefficients.
This leads to the simple relation for a gradient with respect

i=no

Ejm) z
x -%:)CX,({l, {z> {s)

to the geometric parameters:

,=1

(n+l)(n +2)
nO=

2
(15)

where al, al,. . ., anO are the Lagrange interpolation poly-

nomials used in n th-order triangular elements [7], and

[Ejm)] is a column vector containing the values of the

y-directed electric field at the n ~ nodes of the element.

Now from (11) and (14),

where

and the summation is over all triangles sharing node k.

Substituting (15) into (17) and assuming ~r to be constant

in each triangle gives, after some algebra,

. [Z@@] (19)

[T(Z’)I ‘~rdzl[~l (20)

dll=xJ+l–xJ-l (21)

with (z (J’, x ‘J)) the coordinates of vertex j of triangle h.

In the latter two expressions the superscripts are cyclic;

i.e., if j= 3, j+l =1. [KJ’~)] and [T] are nO by rZO

universal matrices [16].

[=2

vg[Y]mn= ~ [RJTvr,[Y]mn (24)
1=1

where

a[y]mn”
dgl

Vg[ylmn= :

f3[Y]mn

agN8

and

:-

a[y]mn -
~rju

Vr, [ylmn= :

~[ylmn

ar/mO)

From the above result and (7) the sensitivity of scattering

parameters to geometric variation is readily available:

vg[S] = –([LJ+[ Y])-l VJY]([S]+[ IO]). (25)

IV. OPTIMIZATION

The quality of a design can be assessed by a cost

function, a single figure of merit which an automatic

optimizer tries to reduce to a minimum.

For example, to minimize return loss at one frequency
for a l-port network, a suitable cost function would be

simply C = lS1l/ 2. A more complicated cost function for a

4-port device is given in Section V, below. As long as the

cost function C can be expressed in terms of the scattering

parameters [S], the derivatives VgC can be evaluated from

a knowledge of Vg[S] (25).

To take full advantage of the availability of VgC, we

have used a quasi-Newton optimization method [17]. The

geometric parameters are updated as follows:

[g(~+l)] = [guo] + JQ[PW)] (26)

where v ‘k) is the step size in the search direction [p(k)] in
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TABLE I
RESULTS FOR THE EMPTY PARALLEL-PLATE WAVEGUIDE

or o.l Ag

s/c

-l

I ,

k— o.3Ag
J

z= o Z=91
Fig. 1. Uniform air-filled parallel-plate waveguide. The open circuit

(0/C) aud short circuit (S/C) correspond to a magnetic wrdl and

conductor boundary respectively.

an Ng-dimensional space. The value of v(k) is found in a

line search which makes use of VgC and combines cubic

interpolation with quadratic polynomial extrapolation [17].

The search direction [p(~)] = – [H(kJ]v,&f~J is generated

by updating an approximate inverse-Hessian [H(k)] using

the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method.

As the geometric parameters change at each iteration Agj

in (26), the coordinates of the vertices lying on the bound-

ary 6’fl~ will change as follows (from (23)):

,j = Ng

Ar{i) =
Z [~llijAgj. (27)

j=]

Following each change of the vertex coordinates, the entire

region is automatically remeshed using Delauney triangu-

lation [18]. The remeshing was found to be inexpensive

compared to the analysis of the problem.

V. I@ULTS

A computer program package SOFIE @cattering-

Parameter (optimization by Finite ~lements) has been

written in Fortran-77 to impl;ment the theory described

above for the design of planar devices [15]. Three examples

were selected with a twofold purpose: to verify the accu-

racy of Vg[ Y] and Vg[ S ] and to validate the software
implementation for design and optimization. All the re-

sults in this section were obtained on a DEC Microvax II

running Ultrix V1 .2.

A. Parallel-Plate Waveguide

A uniform, air-filled parallel-plate waveguide carrying

the dominant mode (TEM) with J3= k.= 27r is shown in

Fig. 1. The guide wavelength is Ag. Let gl be a geometric

parameter defining the distance of 0 Qm from the port. The

object was to compute the normalized susceptance B at

the port, and the corresponding derivative with respect to

gl, for two types of boundary conditions on d il~: open
circuit and short circuit. The analytical solutions can be

obtained in closed form from transmission line theory [12].

The problem was discretized with 14 elements and 13

vertices. The results obtained from finite element analysis

are compared with the analytical values (in parentheses) in

—

Polynomial OPEN CIRCUIT SHORT CIRCUIT
Order

Error (%) Error (%) Error (%) Error (%)

B d6 B X&
G

(-3.07768) (65.7984) (0.324920) (6.94652)
——

1 +5.89 + 6.72 -8.10 +3.90

2 + 0.06 + 0.04 + 0.31 -0.05

3 + 0.03 -0.01 +0.03 -0.01
—

4 + 0.00 +0.00 +0.01 +0.01

x

‘L’~*:z
I

an %Hl%% dfl airIJl;;<...~.-
~$*j,&

itl

91 ‘ 2ag– 91 I 91
z= o

Fig. 2. Rectangularwaveguidefilled with a slab of dielectric of relative
permittivity C,= 1.5.

Table 1. There is excellent agreement with the analytical

results with increasing order of polynomial trial functions.

B. Rectangular Waveguide with Dielectric Slab

A uniform rectangular waveguide filled with a slab of

dielectric and carrying the dominant mode TEIO is shown

in Fig. 2. A ~ is the guide wavelength in the air region

where tlhe propagation constant is & = 7r/2 rad m – 1. The

dielectric region has a propagation constant /32= ~/fi

rad m–l and relative permittivity e, =1.5. In this case the

geometric parameter gl is the length of the air-filled sec-

tion on either side of the slab. This example possesses a

plane symmetry about tt’;therefore only half of the prob-

lem was modeled [19]. As gl varies the electrical length of

the waveguide changes, so L S21 changes. The analytical

solutions were obtained from transmission line theory [12].

The problem was analyzed with about 90 elements and

60 vertices. A graph of d LS21/dgl versus gl is plotted

from the results for second- and ‘fourth-order elements in

Fig. 3. The graph shows that close agreement exists with

the analytical values for a wide range of gl.

C. Stripline 3 dB Hybrid Ring

A stripline 3 dB hybrid ring is a directional coupler with

a circular outer periphery. This type of device is a 4-port

network for which ideally there is no return loss, equal

power coupling at two ports, and a matched fourth port;
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1.77

dLS,l

d91
1.5:

radslm

1.3:

1.1 :

0.9
0.4 0.5 0.6 0.7 0.8 0.9 1.0

91
Tg

Fig. 3. AnalyncaJ (curve) and finite element (points) results for the

derivative d 1S21 /dgl. Asterisks and triangles correspond to second-

and fourth-order elements respectively.

i.e., the ideal scattering matrix [~] has the properties

Is,,l’ = 1s4,/’ = o 1~,,1’=/&ll’ = 0.5. (28)

The model considered is based on an earlier example [2].

The incoming stripline has a characteristic impedance of

50 L?; there is an even spacing of 1.45 mm between middle

conductor and the ground plates; the dielectric material

has relative permittivity ~,= 2.53; and the center fre-

quency is ~0 = 4.94 GHz. The device possesses double

symmetry and so only one quarter of it was analyzed with

different permutations of open (0/C) and short circuits

(s/c) [19].

The characteristics in (28) are required to hold symmet-

rically over a frequency range (0.9~0, l.l~O). The cost func-

tion C minimized was the same as that used in [2]:

C= Fl+F2 (29)

[is*@.9fo)12 - ls112]2+lo[lSz, (fo)12- Ii,l’]’

+ [Isz,(l.lfo)l’– Ij,l’]’} (30)

,=4

F2 = ~ 2[lS,1(l.lfO)12- lSll(0.9fO)12]2. (31)
,=1

The geometric parameters g, (i= 1,2,3, -.., Ng) with

Ng = 17 were assigned along a circular inner periphery d fi?~

(see Fig. 4). Each parameter g, is the distance of one of 17
equally spaced vertices from the origin. The initial shape is

@)= 5.0 mm for i =1,2, 3,. ... Ng, and the coefficientsg,
[Rl],i for the vertices on the boundary d ~~ are given by

[Rl],i = COSd,8i, [R,],, = sind,8ZJ.

In addition, the coefficients [Rl],, were doubled for the

two vertices that lay on planes of symmetry, because this

was found to keep the boundary smooth during the opti-

mization.

x ’23 Port 1,’
1/

‘- /\\

(mm) 10

0/c

{

8

or
6w c ——.
4

2

I I

L J z ( mm)v

O/C or S/C

Fig. 4. Initiaf shape of one quarter of the model for a hybrid ring.

10:

c E-Elo
1

,~ -1_

\ a~o
~y ot

,.-2
!

o 1 2 3 4 5 6 7

k

Fig. 5. Cost function versus search duections k in an Ng-dimensional
space.

TABLE II

COMPARISON OF THE OPTIMIZATION PROCESS OF THE HYBRID RING

WITH AN EARLIER METHOD

Method cost cost Degrees Number of Function

Case Function Function of Line Evaluations

Opti%ation (Start) (End) Freedom Searches (Analyses)

[2] Powell 0.05 0.011 9 52 > 104

Method

SOFTE BFGS 1.94 0.010 17 6 15

The optimization process took 3.5 hours of CPU time.

Initially the mesh contained 251 vertices and 428 second-

order elements. In Fig. 5 the cost function is compared
after each search direction k in a 17-dimensional space.

The function was reduced by a factor of 44 after the first

search direction k = O. The reduction of the cost function

between k = 4 and k = 6 was less than 0.1 percent with

practically no change in the shape of the model.

The results of the optimization are compared with those

of a previous method [2] in Table II. The method em-

ployed in this paper required far fewer cost function

evaluations (analyses). In addition, the starting point in

our optimization had a higher cost function; the overall

reduction in the cost function was by a factor of 194,

compared with 5 in [2].
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0.1

0.0
0.6 0.7 0.8 0.9 1.2 1.3 1.4

f/f. (f O=4.94GIk)

Fig. 6. Frequency response foroptimal shapes analyzed by SOFIE. The

curves and the points correspond to the shape given in [2] and to that

obtained by SOFIE, respectively.

The final optimum shape in this paper is different from

that obtained in [2], indicating that there may not be a

unique solution to the problem. The scattering characteris-

tics of our optimum are compared with those of [2] in Fig.

6 using the finite element method with third-order ele-

ments. The agreement is excellent. External matching cir-

cuits could be added on each arm of the hybrid to further

improve its frequency response.

VI. CONCLUSIONS

When sensitivity information is available, a design can

be much improved in just a few successive analyses be-

cause the direction in which to change the shape is known.

However, this information can usually only be obtained by

numerical differentiation, which requires at least N + 1

analyses if there are N geometric parameters. This adds

greatly to the cost of optimization. The finite element

method is able to provide sensitivities at almost no cost,

thereby providing cheaper optimization.
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