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Optimization of Planar Devices by the Finite
Element Method

PABLO GARCIA aAnD J. P. WEBB, MEMBER, IEEE

Abstract — The finite element method has been shown to be an efficient
and flexible way of computing the scattering parameters of N-port planar
devices (microstrip. stripline, rectangular waveguide, etc.). In addition, it
can provide at little extra cost the sensitivity of scattering parameters to
changes in the shape of the device. Such information may be useful in
itself; it also leads to a faster automatic optimization of the shape. This
approach has been implemented with high-order, triangular finite elements
and the Broyden-Fletcher—Goldfarb~Shanno optimization scheme. Sensi-
tivities were computed for an empty parallel-plate wavegnide and for a
rectangular waveguide containing a dielectric slab: the agreement with
analytical solutions was excellent. The method was used to determine the
optimum shape of a microstrip 3 dB hybrid and was found to require far
fewer analyses than a previous technique [2].

I. INTRODUCTION

APLANAR DEVICE may be defined as one in which
the electromagnetic fields do not vary significantly in
one direction, so that the analysis can be carried out in a
plane. A junction of rectangular waveguides with their H
planes aligned is an example of a perfectly planar device:
provided the incident waves are all of the fundamental
mode, the fields in the junction will not vary with distance
perpendicular to the H plane. By replacing the conducting
sidewalls by magnetic walls, a second class of planar
devices is obtained: the H-plane junction of parallel-plate
waveguides.

In microstrip and stripline components, the fields vary
in all three dimensions. However, below the metal plate
and away from the edges the variation in the direction
perpendicular to the plate is small. Furthermore, the ef-
fects of the fringing fields at the edges can be approxi-
mated by an extra width of metal, followed by a magnetic
wall. This approximation amounts to replacing the mi-
crostrip or stripline with equivalent parallel-plate wave-
guide. Formulas for the dimensions and dielectric constant
of the equivalent model have been derived and used in
several analyses [1]-[3].

The parallel-plate waveguide junction is therefore of
some interest. For the analysis of arbitrary shapes, numeri-
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cal methods must be used and several have been developed
[1], [3]-5]- Further, there have been some attempts at
getting a computer to predict the best shape for a planar
device, i.e., predicting the shape that minimizes return loss,
gives a specified phase shift or division of power, and so
on. The basic approach to automatic optimization is sim-
ple: use the numerical analysis method repeatedly, adjust-
ing the shape of the device each time in such a way as to
improve the performance. In principle, any reliable method
of analysis will do. Integral equation techniques [2] and
mode matching [6] have been used.

An important consideration in optimization is effi-
ciency. There are two ways in which the computer time can
be reduced: using a more efficient analysis technique and
decreasing the number of analyses needed to reach the
optimum. In the former regard, the finite element method
with appropriate sparse matrix techniques is competitive
with other techniques, such as integral equation (or bound-
ary element) methods. But further, it is shown in this paper
how the finite element method can provide, at little extra
cost, the sensitivity of the scattering parameters to changes
in shape. Not only might this information be useful in
itself, but, as described below, it can be used to guide the
optimization of the device and to reduce substantially the
number of analyses required.

II. FiNITE ELEMENT ANALYSIS OF PLANAR DEVICES

The scalar Helmoltz equation governs E, the y compo-
nent of the electric field in a planar device:

V,ZE + kéerE =0 in Q (1)
E=E, ondQ,
JE
% = on 8,
d J
= —_— + _
VZ az az aX ax

where ) is the area of the device in the z~x plane, ¢, is
the relative permittivity of the medium, &, is the normal-
ized frequency, and E, is the prescribed tangential field at
the port. The quantity 32, is a magnetic wall or open
circuit (O/C). When E, is zero, d{,, is an electric wall or
short circuit (S/C).
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Alternatively, it has been shown [7] that the solution to
the above equation is the stationary point of a functional;

5 f (V.E) )

This is the basis of the finite element analysis of planar
devices [8]. By introducing trial functions, (2) is reduced to
a matrix form:

1 T
=S [E] ([S1-K2[T])[E] 3)

where [S] and [7] are well-known global matrices [7].
Taking the stationary point of F and applying boundary
conditions leads to a matrix equation of the form [4][ E] =
[b], in which [ A4] is sparse and symmetric. It is important
to solve this equation with a method that exploits the
sparsity. In the present work, a frontal solver is used [9].

It is convenient to characterize a planar device by net-
work parameters. A variational expression exists for the
impedance matrix of a waveguide junction [10]. Using this
result, the finite element method was used to solve 3-D
waveguide problems [11]. It was shown that for H-plane
devices [8] the entries of the admittance matrix are given
by an expression similar to (2):

F(E)= 2~ ki, E?} dQ.

Y] =— E('”),E(”) (4)
V1o = ¢ )
where
@0y =[{vovi-kisy}da (5
and

m,n=1,---,N

N number of ports,

Ny intrinsic impedance of free space,

b dimension of the structure in the direction of
translational symmetry,

[Y] normalized admittance matrix for the device, de-
fined by [I]=[Y][V], where [I] and [V] are
column vectors of normalized currents and volt-
ages [12] at the ports,

E®  electric field when there is a normalized voltage

of 1 on port k and all other ports are short-cir-
cuited.

E®) js obtained by taking the first variation of (2) when
exciting port k and short-circuiting all other ports. The
entries of the admittance matrix are obtained by matrix
multiplication of the solution vectors [ E )] with the global
matrices:

Vo= BV (151-RITHEL (6)
The scattering matrix is then given by
[$1=([5]+[Y]) " ([H]-[Y]) (7)

where [1;] is the N X N identity matrix.
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III. SENSITIVITY TO PERTURBATIONS

Finite elements have been used in the past to evaluate
the sensitivity of magnetostatic energy to perturbations of
shape, both for optimization [13] and for the calculation of
forces and torques by the principle of virtual work [14]. In
this paper it will be shown how the sensitivity of network
parameters to perturbations of shape can be obtained from
a finite element analysis.

A. Derivative with Respect to an Arbitrary Geometric
Parameter

Let the shape of the region {2, be dependent on a scalar
parameter g in the following way: each point r, in @, is
related to a point r in a reference region £ by

(8)

where o is a specified vector function over Q. Let E é’") be
the solution to the Helmoltz equation over the region {2,
with port m excited and the other ports shorted. Define a
symmetric, bilinear form (¢, ¢ ) as follows:

r,=r+go

(9.9),= [ (999~ kie.py} 40 (9)

4

From (4) the mnth entry of the admittance matrix [Y](g)
is

_j’b m n
[Y]mn(g)=m0_<Eg( )>Eé )>g' (10)

Then it can be shown [15] that the derivative of the
admittance with respect to g, evaluated at g =0, is

d[Y],.,
dg

"]b

(E(m) E(n))
ko”lo

(11)

g=0

where (¢, ¥) is another symmetric, bilinear form:

i22/=2du [ d¢ Ay
(¢ IP)__f{vt vvt¢vt¢ Z Z atliarl—ég

¢ Y )
+Wa—} koe,q)xlzv,-v} ae (12)

and (r, r,) =

(z, x).

B. Derivative with Respect to a Single Vertex Coordinate in
a Finite Element Mesh

In the finite element method, the region & is divided
into triangles. The geometry of the region is then depen-
dent on the coordinates of the vertices of these triangles.
In this section, we evaluate (11) for a deformation of £
corresponding to the movement of a single vertex along
one coordinate axis, with all other vertices remaining fixed.

If the moving vertex has a global number k, and the
movement is along axis 7, (/ being 1 or 2), then we need a
v such that

0|y

at r=r®
atr=r", i*k

(13)
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where a, is the unit vector in the 7, direction, and ™ is
the position vector of vertex k.

Such a v can be constructed by linear interpolation of
the vertex values; i.e., v is a continuous, first-order vector
field on each triangle. Let &k be the local vertex number (1,
2, or 3) of node k in element A. Then in that element,

v=_{za, (14)
where {7 is the kth area coordinate [7]. The derivative
d|Y],../dg at g =0 for this v will be called

d [ Y] mn

drf -
Also in element #,
1=ny

E}fm)z Z E}S:")ai(§1a§2»§3)
=1

(n+1)(n+2)

= 15
o 2 (15)
where &, @, -, , are the Lagrange interpolation poly-
nomials used in nth-order triangular elements [7], and
[E{™] is a column vector containing the values of the
y-directed electric field at the n, nodes of the element.

Now from (11) and (14),

% - Jb Z(E(m) E(n))(zh)

dr,(") ko"’lo B koo TR

(16)
where

Z 8% 1227 3§k I Iy

Ckhy BALE VS A

(¢’ 1[/)/ ‘/;h{ (9"[ vt¢ VIIIJ 121 J - ar 8", 8"]
99 3y , 0%

8 a7y ] koe,mb——arl } dQ (17)

and the summation is over all triangles sharing node k.
Substituting (15) into (17) and assuming €, to be constant
in each triangle gives, after some algebra,

[ ([5699] - 7]} [5¢0)
(18)

CERTIEE

where
—3 q= 3 =2

[sF0)] = Z Y Y [d,drd,—ds

p=14g=11=1

(d,d,+d,d,)]

P ql

.[K(pq)]

(19)
(20)
(21)
(22)

with (2, x) the coordinates of vertex j of triangle .
In the latter two expressions the superscripts are cyclic;
ie, if j=3, j+1=1 [K??] and [T] are n, by n,
universal matrices [16].

[TF0] =€, dg [ T]
d,=x"1—x/71

=7/l ,u+1
d,=z z

C. Derivative with Respect to a Combined Movement of
Vertices in a Finite Element Mesh

The derivatives with respect to vertex coordinates shown
above may be related to other geometric parameters that
describe the optimization problem Let a set of geometric
parameters g, (j=1,2,---, N,) specify a movable bound-

ary 39, in the followmg way: Let (r{D,rf), i=
1,2,-+-,m,, be m, triangle vertices lying on d,. For
i=1,2,---,my and /=1,2,
i N,
r[(i)= 21 [Rl]ljgj+[cl]lj (23)
/=

where [R,], ,[¢,],, are constant, user-specified coefficients.
This leads to the simple relation for a gradient with respect
to the geometric parameteIS'

v [Y], Z [R,]79,[¥],, (24)

where

[ I[Y ]

98

Vel Y] = :

[Y],.,
dgy

8

and

Vr,[Y]mn= .
I ]
arl(mo)

From the above result and (7) the sensitivity of scattering
parameters to geometric variation is readily available:

Vo[ST= = (L] +[Y]) 7w, Y I([S]+[ L))

IV. OPTIMIZATION

(25)

The quality of a design can be assessed by a cost
function, a single figure of merit which an automatic
optimizer tries to reduce to a minimum.

For example, to minimize return loss at one frequency
for a 1-port network, a suitable cost function would be
simply C = |S;;|% A more complicated cost function for a
4-port device is given in Section V, below. As long as the
cost function C can be expressed in terms of the scattering
parameters [S], the derivatives v,C can be evaluated from
a knowledge of v,[S] (25).

To take full advantage of the availability of v,C, we
have used a quasi-Newton optimization method [17] The
geometric parameters are updated as follows:

[g+D] = [g®] + v [ po] (26)
where v(® is the step size in the search direction [ p®] in
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Fig. 1. Uniform air-filled parallel-plate wavegnide. The open circuit
(0/C) and short circuit (S/C) correspond to a' magnetic wall and
conductor boundary respectively.

an N -dimensional space. The value of v*) is found in a
line search which makes use of v ,C and combines cubic
interpolation with quadratic polynomial extrapolation [17].
The search direction [ p] = ~[H®]v,CH is generated
by updating an approximate inverse-Hessian [ H '] using
the BFGS (Broyden-Fletcher—Goldfarb—Shanno) method.
As the geometric parameters change at each iteration Ag;
in (26), the coordinates of the vertices lying on the bound-
ary {2, will change as follows (from (23)):

J="Ng

Arfd ="}, [Rl]ijAgj'
Ji=1

(27)

Following each change of the vertex coordinates, the entire
region is automatically remeshed using Delauney triangu-
fation [18]. The remeshing was found to be inexpensive
compared to the analysis of the problem.

V. REsuLTS

A computer program package SOFIE (Scattering-
Parameter Optimization by FlInite Elements) has been
written in Fortran-77 to implement the theory described
above for the design of planar devices [15). Three examples
were selected with a twofold purpose: to verify the accu-
racy of V,[Y] and v, [S] and to validate the software
implementation for design and optimization. All the re-
sults in this section were obtained on a DEC Microvax 11
running Ultrix V1.2

A. Parallel-Plate Waveguide

A uniform, air-filled parallel-plate waveguide carrying
the dominant mode (TEM) with 8 =k, = 2= is shown in
Fig. 1. The guide wavelength is A . Let g, be a geometric
parameter defining the distance of 9§, from the port. The
object was to compute the normalized susceptance B at
the port, and the corresponding derivative with respect to
g, for two types of boundary conditions on 4, open
circuit and short circuit. The analytical solutions can be
obtained in closed form from transmission line theory [12].

The problem was discretized with 14 elements and 13
vertices. The results obtained from finite element analysis
are compared with the analytical values (in parentheses) in
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TABLE I
RESULTS FOR THE EMPTY PARALLEL-PLATE WAVEGUIDE
Pdlynomial OPEN CIRCUIT SHORT CIRCUIT
Order
Error (%) | Error (%) | Error (%) | Error (%)
B B B dB
d g, d g,
(-3.07768) | (65.7984) | (0.324920) | (6.94652)
1 +5.89 +6.72 -8.10 +3.90
2 +0.06 +0.04 +0.31 -0.05
3 +003 | -001 +0.03 | -0.01
4 +0.00 +0.00 +0.01 +0.01

By ——————>
b 4
L——- :
v o S/C
- 9 1
i A
2| air 8Q 1 29
=} 2
ﬁ-n‘ FS) ¥
' I
: s/C } b : s/C |
: 91’; 2)\9_ 91’: 9, 1
z= 0

Fig. 2. Rectangular waveguide filled with a slab of dielectric of relative
permittivity €, =1.5.

Table 1. There is excellent agreement with the analytical
results with increasing order of polynomial trial functions.

B. Rectangular Waveguide with Dielectric Slab

A uniform rectangular waveguide filled with a slab of
dielectric and carrying the dominant mode TE,, is shown
in Fig. 2. A, is the guide wavelength in the air region
where the propagation constant is 8; = 7/2 rad m™". The
dielectric region has a propagation constant S8, =7/ V2
rad m~! and relative permittivity €, =1.5. In this case the
geometric parameter g, is the length of the air-filled sec-
tion on either side of the slab. This example possesses a
plane symmetry about #¢’; therefore only half of the prob-
lem was modeled [19]. As g, varies the electrical length of
the waveguide changes, so £S,; changes. The analytical
solutionis were obtained from transmission line theory [12].

The problem was analyzed with about 90 elements and
60 vertices. A graph of d«S,, /dg, versus g, is plotted
from the results for second- and fourth-order elements in
Fig. 3. The graph shows that close agreement exists with
the analytical values for a wide range of g;.

C. Stripline 3 dB Hybrid Ring

A stripline 3 dB hybrid ring is a directional coupler with
a circular outer periphery. This type of device is a 4-port
network for which ideally there is no return loss, equal
power coupling at two ports, and a matched fourth port;
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das8,,
dg, A
1.5 4
rads/m
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1.1 3 *
] *
] *
0.9 :mmmmmm
04 05 08 0.7 08 09 1.0
94
Ag

Fig. 3. Analyucal (curve) and finite element (points) results for the
derivative d £S,, /dg,. Asterisks and triangles correspond to second-
and fourth-order elements respectively.

i.e., the ideal scattering matrix [S] has the properties

181212 = 1842 =0 1Sy1> =181 =0.5.  (28)

The model considered is based on an earlier example [2].
The incoming stripline has a characteristic impedance of
50 §2; there is an even spacing of 1.45 mm between middle
conductor and the ground plates; the dielectric material
has relative permittivity e, =2.53; and the center fre-
quency is f,=4.94 GHz. The device possesses double
symmetry and so only one quarter of it was analyzed with
different permutations of open (O/C) and short circuits
/0 191

The characteristics in (28) are required to hold symmet-
rically over a frequency range (0.9f,,1.1f,). The cost func-
tion C minimized was the same as that used in [2]:

C=F+F, (29)

=4
Fr= % {[15a00:9)17 = 15221 +10[1S4(fo) 12— 184/2]°
=1

+1S.(115) P =181 (30)

Fy= Y 2[IS,(1.1/,) 2~ 15,(0.96,) 7]

=1

(31)

The geometric parameters g, (i=1,2,3,---, N,) with
N, =17 were assigned along a circular inner periphery 4Q,,
(see Fig. 4). Each parameter g, is the distance of one of 17
equally spaced vertices from the origin. The initial shape is
8 =50 mm for i=1,2,3,---,N,, and the coefficients
[R/],; for the vertices on the boundary 9, are given by

[R,],i=cos8;, [R,],=sind3,,.

In addition, the coefficients [R,],, were doubled for the
two vertices that lay on planes of symmetry, because this
was found to keep the boundary smooth during the opti-
mization.

0/C or S/C
Fig. 4. Initial shape of one quarter of the model for a hybrid ring.
10 3
C
)
14
10 "‘E
10 = [ \E\S\% 2 T
0 1 2 3 4 5 6 7
k
Fig. 5. Cost function versus search directions k in an N,-dimensional
space.
TABLE 11

COMPARISON OF THE OPTIMIZATION PROCESS OF THE HYBRID RING
WITH AN EARLIER METHOD

Method Cost Cost Degrees | Number of| Function
Case of Function | Function of Line Evaluations
Optimization | (Start) (End) Freedom | Searches | (Amalyses)
2] Powell 0.05 0.011 9 52 > 104
Method
SOFIE BFGS 1.94 0.010 17 6 15

The optimization process took 3.5 hours of CPU time.
Initially the mesh contained 251 vertices and 428 second-
order elements. In Fig. 5 the cost function is compared
after each search direction k in a 17-dimensional space.
The function was reduced by a factor of 44 after the first
search direction k = 0. The reduction of the cost function
between k=4 and k=6 was less than 0.1 percent with
practically no change in the shape of the model.

The results of the optimization are compared with those
of a previous method [2] in Table II. The method em-
ployed in this paper required far fewer cost function
evaluations (analyses). In addition, the starting point in
our optimization had a higher cost function; the overall
reduction in the cost function was by a factor of 194,
compared with 5 in [2].
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Fig. 6. Frequency response for optimal shapes analyzed by SOFIE. The
curves and the points correspond to the shape given in [2] and to that
obtained by SOFIE, respectively.

The final optimum shape in this paper is different from
that obtained in [2], indicating that there may not be a
unique solution to the problem. The scattering characteris-
tics of our optimum are compared with those of [2] in Fig.
6 using the finite element method with third-order ele-
ments. The agreement is excellent. External matching cir-
cuits could be added on each arm of the hybrid to further
improve its frequency response. ‘

VL

When sensitivity information is available, a design can
be much improved in just a few successive analyses be-
cause the direction in which to change the shape is known.
However, this information can usually only be obtained by
numerical differentiation, which requires at least N +1
analyses if there are N geometric parameters. This adds
greatly to the cost of optimization. The finite element
method is able to provide sensitivities at almost no cost,
thereby providing cheaper optimization.

\

CONCLUSIONS
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